Interactive Object Segmentation from Multi-view
Images

Thi Nhat Anh Nguyen?, Jianfei Cai®*, Jianmin Zheng®, Jianguo Li°

®Danang University of Technology, Vietnam
bSchool of Computer Engineering, Nanyang Technological University, Singapore 639798
¢Intel Labs China

Abstract

Despite the great progress on interactive image segmentation, image co-
segmentation, 2D and 3D segmentation, there is still no workable solution
to the problem: given a set of calibrated or un-calibrated multi-view images
(say, more than 40 images), by interactively cutting 3 ~ 4 images, can the
foreground object of the rest images be quickly cutout automatically and ac-
curately? In this paper, we propose a non-trivial engineering solution to this
problem. Our basic idea is to integrate 3D segmentation with 2D segmenta-
tion so as to combine their advantages. Our proposed system iteratively per-
forms 2D and 3D segmentation, where the 3D segmentation results are used
to initialize 2D segmentation and ensure the silhouette consistency among
different views and the 2D segmentation results are used to provide more
accurate cues for the 3D segmentation. The experimental results show that
the proposed system is able to generate highly accurate segmentation re-
sults, even for some challenging real-world multi-view image sequences, with
a small amount of user input.

Keywords: Interactive image segmentation, multi-view image
segmentation, image co-segmentation.

*Corresponding author.
Email addresses: ngt.nhatanh@gmail.com (Thi Nhat Anh Nguyen),
asjfcai@ntu.edu.sg (Jianfei Cai), asjmzheng@ntu.edu.sg (Jianmin Zheng),
jianguo.li@intel.com (Jianguo Li)

Preprint submitted to Elsevier February 6, 2013



1. Introduction

This paper studies the problem of precisely segmenting a foreground ob-
ject out of a set of multi-view images containing the object. The objective
here is not to obtain an approximate boundary in each image, but to gener-
ate a highly accurate and coherent silhouette in each view. Such an accurate
multi-view object segmentation is very useful for many applications such
as 3D reconstruction [1], multi-view image editing, object recognition and
teleconference [2].

One straightforward solution is to segment each image in the multi-view
sequence separately. Although the performance of the existing automatic
image segmentation methods is still far from satisfactory, the interactive
segmentation approaches [3, 4, 5|, which involve a small amount of user
input, can already achieve very accurate segmentation. However, it would
require too much user effort to interactively segment each individual multi-
view image, considering that a multi-view image sequence often consists of
40 ~ 80 images or more [1]. For a practical solution, it is highly desirable to
only interactively segment a small number of images, say 3 ~ 4 out of the
entire multi-view image set.

Another way is to apply the recently developed image co-segmentation
technique to jointly segment all the multi-view images. The image co-
segmentation problem was first introduced in [6], which deals with auto-
matically segmenting a similar foreground object from two images with un-
related backgrounds. It was later on being extended to scale invariance and
multiple images and improved with a co-saliency prior or multiple cues [7,
8, 9]. User interactions have also been introduced into the co-segmentation
problem in [10, 11] to improve the segmentation accuracy. However, im-
age co-segmentation is different from multi-view segmentation. The co-
segmentation algorithms do not assume that there exists strong multi-view
geometry in the set of images and thus in general they are not able to achieve
accurate and consistent cutout for multi-view images by only interactively
editing 3 ~ 4 images.

In addition to the possible solutions in the 2D domain, a 3D-domain ap-
proach has been proposed in [12], which deals with exactly the same problem
we study here. The authors in [12] exploited the silhouette coherency con-
straint existing in the multi-view images and developed a fully automatic
approach for the multi-view object segmentation. In particular, a 3D graph
is built with edge weights derived from the corresponding projections and



foreground /background models obtained by assuming that the foreground
object is located in the center of each image. Then, 3D graph-cut is per-
formed to generate the 3D segmentation result. From the projection of the
3D segmentation result, an improved color model is updated, which is being
used for the next round 3D segmentation. The whole process repeats until
convergence.

Although the 3D domain approach [12] ensures the silhouette coherence
well, it has some limitations. First, it only makes use of the color prior in
the data term of the 3D graph-cut, which can produce good results in the
cases that the foreground and background color distributions are simple and
well separated. However, for many real-world examples (e.g. Fig. 6), the
object is often captured in cluttered or camouflaged environment, for which
the color model itself is insufficient to distinguish the foreground from the
background. Second, it assumes that the object of interest is located at the
center of each image, which is not always true.

A similar multi-view segmentation problem has also been studied in [13],
where a nice theoretical framework is proposed to jointly consider 2D and 3D
information to cluster and label 2D regions and 3D point clouds at the same
time. However, the entire system is quite complex, requiring the generation
of 3D point clouds, the generation and filtering of 2D regions, the visibility
detection for 3D points, the graph construction using the k-nearest neighbor
algorithm (kNN), etc, and only one indoor multi-view sequence is tested.

Despite these previous efforts, to the best of our knowledge, there is still
no workable solution to the problem: given a set of calibrated or un-calibrated
multi-view images (say, more than 40 or 80 images), by interactively cutting
3 ~ 4 images, can the foreground object of the rest images be quickly cutout
automatically and accurately? This is exactly what this paper can offer.
Our work is motivated by the observation that all the multi-view images
represent the same scene and hence there exists strong geometric coherence
among these images and the actual 3D object-of-interest as well. This prop-
erty should be considerably utilized in developing a multi-view segmentation
tool. Our basic idea is thus to iteratively perform 2D and 3D segmentation,
where the 3D segmentation results are used to initialize 2D segmentation,
which ensures the silhouette consistency among different views, and the 2D
segmentation results are used to provide more accurate cues for the 3D seg-
mentation.

In particular, we first use interactive 2D image segmentation to segment
only a few images at high accuracy so as to introduce high-level prior into the

3



Pre-segmentation by Initialization Silhouette refinement 30 graph-cut Local editing &
> interactive 2D cut > by visual hull I’ by 2D cut > grap ‘ > co-refinement >

Figure 1: The diagram of the proposed multi-view object segmentation system.

system as hard constraints. Since only a few images need to be interactively
segmented, the required user effort is of small amount. Second, considering
that each individual multi-view image in fact contains a great amount of
information, not just color, regarding the foreground and the background,
we extend the iterative 3D volumetric graph-cut developed in [12] in two
aspects: incorporating not only the color cue but also the silhouette cue, and
enforcing the hard constraints extracted from the initial user interaction.
The silhouette cue is generated and iteratively updated using an innovative
2D convex active contour model. In addition, a local editing and refinement
step is also introduced to allow the user to edit the most erroneous image and
quickly update the segmentation results of the entire multi-view sequence.
Despite the fact that most of the components used in the proposed multi-
view object segmentation system are prior arts and the fundamental theory
is not new, this paper does make noticeable contributions in terms of provid-
ing a non-trivial engineering solution to the multi-view object segmentation
problem. Specifically, our major contribution is that we propose to incor-
porate the user prior, obtained through interactive image segmentation in a
small set of images, as hard constraints, the silhouette cue obtained through
the 2D convex active contour method as well as the color cue into the it-
erative 3D segmentation framework. Such an integration is non-trivial and
the experimental results show that the proposed system is able to generate
highly accurate segmentation results, even for some challenging real-world
multi-view image sequences (see Fig. 6), which has not been seen in lit-
erature before. Note that there are only a few works specifically focusing
on multi-view image segmentation as discussed above and publicly available
multi-view sequences such as Middlebury datasets [1] are of simple back-
ground and captured in indoor environment. Thus, we have made efforts
to capture some real-world multi-view image sequences with complex ob-
ject shape and background. We will release the captured real-world outdoor
multi-view image dataset, which is another contribution to the community.



2. System Overview

The primary inputs of our system are a set of M multi-view color images,
{L,Jm=1,---, M}, and a set of associated projection matrices that could be
obtained through camera calibration. Note that the camera calibration is not
an indispensable step for the proposed system. For un-calibrated multi-view
images, the projection matrices can be obtained by using the structure-from-
motion technique [14]. A projection matrix allows the center of any voxel
v, € R? to be mapped to its corresponding location Tmn € R? in image I,,,.
The output of our system is the segmentation result for all the images, which
can be represented by the object silhouettes or the foreground/background
binary images.

Fig. 1 shows the diagram of the proposed multi-view object segmenta-
tion system. It can be seen that the entire system consists of five steps:
pre-segmentation by interactive 2D cut (on a small subset of images), ini-
tialization by visual hull [15], silhouette refinement by 2D cut, 3D graph-cut
and local editing and co-refinement. The detailed system flowchart is shown
in Fig. 2, where the five main steps are highlighted in red.

The first step is to segment a small set of images Iy (normally 3 to
4 images) sampled from the multi-view image sequence to obtain precise
silhouettes using any of the existing interactive image segmentation methods
such as Grabcut [3] or Geodesic [4], where the user typically needs to to draw
two types of colored strokes on an image to label some pixels as foreground
and background seeds to guide the segmentation process. The silhouettes of
these images [y are used as hard constraints to guide the segmentation of
the remaining images at the later steps.

The second step is to generate an initial silhouette for each of the re-
maining images, I,, ¢ Ig. In particular, a visual hull containing the object
is first generated from the pre-segmented silhouettes using the shape-from-
silhouette method in [16]. The visual hull is then projected on each of the
remaining images to generate an initial silhouette.

Considering that the initial silhouette obtained through 3D projection is
not accurate, in the third step we extend a recently developed convex active
contour model [17] to evolve the initial silhouette in each remaining image
to snap to its nearby geometry features. The details of the developed convex
active contour method will be discussed in Section 4.

In the fourth step, to ensure the segmentation coherence across different
views, similar to [12], a 3D object segmentation via 3D graph-cut is per-



Interactive segmentation on a small set of images [

/ Precise silhouettes for images [ /

Visual hull initialization

v v

Initial silhouettes for remaining images /

Y v

Silhouette refinement by 20 cut Color modeling using GMM
Update silhouettes / Silhouette cue / / Calor cue /
A + *

3D graphcut

v

/Object voxel set and projected silhouettes/

Mo

Converged?

Local editing and co-refinement

Figure 2: The flowchart of the proposed multi-view object segmentation system.



formed. However, unlike [12], the 3D graph-cut developed in this research
utilizes not only a color cue but also a silhouette cue as well as hard con-
straints obtained from the initial user interaction. The details of the fourth
step is described in Section 3. We would like to point out that step 3 and step
4 are tightly coupled and they together form an iteration process. In each
iteration, the refined silhouette via the convex active contour provides better
color and silhouette cues for the 3D graph-cut and in return the graph-cut
produces better initial silhouette for the next-round silhouette refinement.

Finally, considering that for some complex multi-view image sequences
there might still have some errors in the silhouettes after the iterative 2D
and 3D segmentation, we introduce the last step to allow the user to easily
and arbitrarily refine the segmentation result of any of the images locally
with extra foreground or background strokes. After the local refinement, the
silhouettes for the entire sequence will be updated accordingly. The proposed
local editing and co-refinement scheme ensures a fast editing and updating
speed. A smart image selecting scheme is also developed to automatically
suggest the most erroneous image in the sequence to the user for local editing.
Details of this last step can be found in Section 5.

3. 3D Graph-cut Using Color and Silhouette Cues

Similar to [12], a volumetric graph-cut algorithm is employed in our sys-
tem to segment the object in 3D space. In particular, a 3D array of voxels V'
is formed within the bounding box of the object’s visual hull. We create a 3D
undirected graph with nodes corresponding to voxels, v, € V', and two addi-
tional nodes: an “object” terminal (a source S) and a “background” terminal
(a sink T'). There are two types of undirected edges in the graph: n-links
(neighborhood links) connecting each pair of neighboring voxels, {v;, v;} € E,
and t-links, {v;, S} and {v;, T}, connecting each voxel v; to each of the two
terminals. Let w(v;,v;) denote the weight of the link {v;,v;}, representing
how strong the link is or how similar the connected two nodes are.

Following [12], our 3D graph-cut operation is formulated as an energy
minimization process:

Y =arg glclg E4(0,0) + M E (O) (1)

where Fy is the data term measuring the energy cost of a segmentation with
a corresponding object voxel set O against the prior model ©, Ey is the



smoothness term measuring the energy cost of disconnecting the boundary
links, and A; is the trade-off factor. Unlike [12], which only uses the color
cue for ©, we incorporate both color and silhouette cues.

3.1. Smoothness Term

As in [12], the smoothness term measures the energy cost associated with
the surface area of the object, i.e. the summation of the weights of all the
boundary links:

Es = Z U}(Ui, Uj)? (2)
{vi,v;}€E,v;€0,v;€B
where FE is the set of n-links, and O and B are the object and the background
voxel sets, respectively. The n-link weight w(v;,v;) is defined according to
the minimum pixel color difference of the projections of v; and v; over all the
views:

— A 12
w(viyyj) = mﬁxe B [ Im (2 m, i) —Im (Tm, ;)| (3)

where I,,, is the m-th image, z,,; and z,, ; are the projected pixels of v; and
v; on image m, respectively, and 3, is a parameter estimated from image m
as in [3].

3.2. Data Term

The data term provides the preference for a voxel to be classified as object
or background according to the prior model. It can be expressed as

Eq = ypw(vn, T) + (1 — yn)w(vs, S) (4)
where y,, is the label of v,, and

Yp =1, v, €0
yn:07 UnEB,

and w(v,, T) and w(v,, S) are the weights of the t-links {v;, T’} and {v;, S},
respectively.

Considering that the actual object lies entirely within the initial visual
hull, the set of voxels that is outside the initial visual hull, which is denoted
as By, is confirmed to be background voxels. To enforce this hard-constraint
for the 3D graph-cut, we set

Vv, € By, w(v,,S)=0, w(v,T)=A (5)

8



where A is a constant whose value is large enough to force any v, € By to
be a background voxel (see Section 6.1 for details). For other voxels, their
t-link weights are computed according to the color and silhouette cues.

In particular, Vv, ¢ By, their t-link weights are defined as

(i)
w(v,, T)=1- [{% Z L (T @)} - ¢] (6)

m=1

w(v,,S) =1+

where L, (.., ©) € [0, 1] is the likelihood that the projected pixel z,,,, of
v, on image I,, belongs to foreground. In (6), we combine the probabilities
from the individual images with a threshold parameter ¢ € [0, 1], which
encodes the level of robustness to noise of the algorithm in the same way
as that in [12]. In this way, a voxel v, is more likely to be classified as

inside the object if w(v,,S) > w(v,, T), which happens when the averaging
M

probabilities across all the images {ﬁ Z Ly (%, ©) p is larger than ¢.
m=1
Considering the special case of perfect object segmentation in all the images,

i.e. the case of ideal binary classification where L,, (%, ,, ©) is either 0 or 1,
a voxel would only be classified as an object voxel when all the silhouettes
agree that the projection of that voxel is always a foreground pixel, i.e.
L (2mn,®) = 1 for all the images. Therefore, in this case, ¢ — 1 since

M
ﬁ Z Lp(2mn,©) p — 1. In our algorithm, ¢ is set to a value between
m=1

0.8-0.9 to tolerate the imperfect classification in each image.

Now we show the key issue of how to calculate the probability L., (2, ©)
for each individual image. Specifically, for an image I,,, that does not belong
to the set Iy of the pre-segmented images, the probability is computed as

L, ©) = a1 Py () + (1 — 1)t (T n) (7)

where Py, (%) is the color cue that assesses the fitness of projected pixel
Ty of voxel v, on image I, to the foreground/background color models,
which will be introduced in Section 3.3, w, (%, ) is the silhouette cue rep-
resenting the probability of pixel z,,, belonging to the foreground based on



the 2D cut, which will be discussed in Section 4, and «; (empirically set as
0.5) is the tradeoff factor between the color cue and the silhouette cue.

For an image I,,, that belongs to the set Iy of the pre-segmented images,
if x,,, is a background pixel, then v, € By, the set of voxels that are
confirmed to be outside of the object, for which the t-link weights are set
as (5). Otherwise, if z,,,, is a foreground pixel (labelling function v, , = 1),
theoretically, L, (2, ©) should be equal to 1. However, we will show in
Section 3.4 that VI, € Iy, Vymn = 1, Lpy(@mn, ©) needs to be carefully set
in order to meet the hard constraints.

3.3. Gaussian Mixture Model Based Color Cue

The color cue assesses the fitness of a pixel’s color to the foreground /background
color models. The color models represent the color distributions of the fore-
ground and background regions. Similar to [12], we use Gaussian Mixture
Model (GMM) for color modelling. Specifically, at each iteration, foreground
and background GMMs are learnt from foreground and background seeds,
which are derived from the current silhouette at each image. For the im-
ages that belong to the set of the pre-segmented images Iy, the foreground
and background seeds are the entire segmented foreground and background
regions. For the images that do not belong to Iy, it can be observed that
the pixels that are far away from the object boundary are more likely to be
correctly classified. Thus, we obtain the foreground and background seed
regions in [, ¢ Iy by shrinking the foreground and the background regions
by a safe distance D;. Considering that the voxels outside the initial visual
hull are confirmed background voxels, the background seed region is further
updated as the union of the shrinked background region and the initial back-
ground region resulted from the initial visual hull in the first step of our
framework.

The foreground seed region in each image may not contain all the color
of the object since one image only captures one view of the object. Thus,
to build up a global color model for the object, we use the pixels from the
foreground seeds of all the views. On the other hand, as the background varies
over different views, a separate background GMM color model is learnt for
each view. Considering that the background seed region at one view may not
contain all the color information of the background at that particular view
due to occlusion, we also sample the nearby views, whose camera directions
are less than 45 degree away from the particular view.

10



Let Pry,(z|F) and Pr,(z|B) denote the probabilities that pixel z in im-
age I, fits the foreground and background GMM color models, respectively.
The color cue P, (z) representing the normalized likelihood that pixel z is a
foreground pixel is calculated as

Py () = Prp,(z|F) .
Prp,(z|F) 4+ Pry,(x|B)
3.4. Hard Constraint Enforcement

In the first step of our framework, with sufficient user interaction, it
is reasonable to deem that for the set Iy of the pre-segmented images we
obtain perfect silhouettes, which are used as hard constraints for the sub-
sequent segmentation. However, the 3D graph-cut does not guarantee that
the projection of the segmented 3D object on Iy matches the hard con-
straints of the pre-generated silhouettes. Specifically, let v, ,, and ¥y, re-
spectively denote the segmentation results obtained in the first step of the
pre-segmentation and the fourth step of the 3D graph-cut for pixel z,, , with
I, € Iy and yp,, = 1. The issue here is how to set L, (., ©) so as to
ensure Ympn = Ymn = 1.

In particular, V1, € Iy, V2 0, Ymn = 1 implies that at least one of the
3D voxels lying in the optical line of pixel z,,, must be an object voxel. Let
Up, denote such an object voxel for pixel z,,,. Considering that the t-link
weights for vy, is calculated according to (6), simply setting L, (2, », ©)=1
does not guarantee that the average likelihood over all the M images is big
enough to make v,, being classified as an object voxel in the 3D graph-cut.
On the other hand, setting Ly,(z.», ©) to a value large enough to guarantee
Umn = Ym,n might have the problem of making background voxels lying on
the optical line of z,,,, being classified as object voxels.

Thus, instead of assigning a fixed constant value to the foreground likeli-
hood Ly, (T, ©), Vi € Iy, YTy, ,, With Y, = 1, we propose to find a value
for Ly, (Tm.n, ©) adaptively through iterations. Specifically, VI, € Iy, V2,
with Y, = 1, we initialize L, (2, ©) = 1. After each iteration of the 3D
graph-cut, if 9, # Y., We increase Ly, (2, ©) by a small constant value
and then repeat the 3D graph-cut. The iteration stops when ¢, ,, = Ymn.
Note that this is an inner iteration of the 3D graph-cut, which runs quite
fast since there is no need to update the color and the silhouette cues.

Fig. 7 shows the projected segmentation results of a few images in the
“stone” image sequence, where images numbered 1 and 5 are two of the three
pre-segmented images. It can be seen that fixing L,, (2, ,, ©) = 1 in the case

(8)

11



(a) Initial silhou- (b) Initial proba- (c) Refined (d) Silhouette
ette bility map y silhouette prior u

Figure 3: An illustration of the proposed silhouette refinement. (a) an initial silhouette
produced by the projection of the current 3D volume; (b) the initial probability map y
calculated by (10); (c) the refined silhouette using the constrained convex active contour;
(d) the silhouette cue u obtained by solving (9) and to be used in (7).

that I,,, € Iy and x,,, is a foreground pixel results in significantly smaller
foreground regions in all the images including images 1 and 5 (see the 2nd
row of Fig. 7), while fixing L, (%, ©) = 1.5 results in a bigger foreground
regions (see the 3rd row of Fig. 7). On the contrary, the proposed adaptive
selection of the values for L, (2, ©) leads to accurate foreground regions
(see the 4th row of Fig. 7) that comply with the hard constraints of images
1 and 5.

4. Silhouette Refinement Via 2D Segmentation

The step of the silhouette refinement serves for two purposes: one is to
refine the initial contour in each image produced by either the visual hull
or the 3D graph-cut, and the other is to generate better silhouette cues
for the subsequent 3D graph-cut. In this research, we adapt the powerful
convex active contour model [17] for the silhouette refinement. The reason
we choose the convex active contour model as a 2D segmentation method
for the silhouette refinement lies in its strong capability to evolve the initial
contour to snap to the geometry features/edges in an image and its fast
processing speed due to convex optimization. Note that we have successfully
adapted the convex active contour model for interactive image segmentation
in [18]. For the self-contained purpose, in the following we briefly introduce
the model and explain how to apply it for the silhouette refinement in the
current context.

The convex active contour model proposed in [17] can be generally ex-
pressed as

0%21([2 gb|Vu|dx+)\2/Qhrudm), (9)

12



where V is the gradient operator, u is a function on image domain €2 and re-
ceives a value between 0 and 1 at each pixel location x in the image, function
gp 1s typically an edge detection function (by default g,(z) = W, where
I(z) is the intensity of image pixel x), and function h, is a region function
that measures the inside and outside regions. Essentially, Eq. (9) consists of
two terms balanced by a tradeoff factor Ay, where the first term is a bound-
ary term and the second term is a region term. The boundary term favors
the segmentation along the curves that the edge detection function reaches
minimum and also favors the segmentation with smooth boundary curves.
The second term ensures the segmentation complying with some region co-
herence criteria defined in function h,. Once the optimization problem of (9)
is solved, i,e. function u has converged, a new boundary contour is found by
thresholding the function u, i.e. the foreground pixel set Sg = {x|u(z) > T'}
(by default 7' = 0.5).

Next we discuss how to apply (9) to refine the initial contour obtained
by projecting the current 3D volumetric object into the particular view. In
particular, let y(x) denote a probability map over the image domain repre-
senting the probability that pixel x belongs to the foreground object. We first
set y(x) according to the initial silhouette, where a value of 0 or 1 indicates
a background or foreground pixel at location x respectively. Considering
that the areas far away from the current boundary are likely to be correctly
classified, we update y(z) as

1, if d(x) > Dy and y(x)

0.5+ 0.5(d/Dy)?, if d(x) < Dy and y(x)

Y(*) =9 05— 05(d/Dy)?, if d(x) < Dy and z(x) (10)
(x) (x)

0, if d(x) > Dy and y(x

where d(x) denotes the Euclidean distance from pixel z to its nearest bound-
ary point, and Ds, a threshold value on d, is empirically set to 1—10\/E with
R, representing the size of the current foreground region.

We then build up local foreground and background GMM models for each
image, where the sets of pixels with y(x) = 1 and y(x) = 0 are treated as
foreground and background seeds, respectively. Note that the GMM models
in Section 3.3 are different from the models here, where the previous GMM
models are trained across different views and for the purpose of the 3D seg-
mentation while the GMM models here are obtained from each individual
image and for the purpose of the 2D segmentation.

13



With the local GMM models, the region term h, is then defined as
hy(2) = 2(Pp(z) — Pr(z)) + (1 — a2)(1 = 2y(z)), (11)

where Pr(z) and Pg(x) are the normalized foreground and background like-
lihoods respectively, calculated in a way similar to (8), and « is a tradeoff
factor. The first term (Pg(x) — Pr(x)) in (11) ensures that the active con-
tour evolves towards the one complying with the local GMM color models.
For instance, for pixel z, if Pg(z) > Pp(x) (resp. Pgp(z) < Pp(x)) and
Pg(z) — Pr(x) is positive (resp. negative), u(z) tends to decrease (resp. in-
crease) during the contour evolution in order to minimize (9), which can lead
to u(z) < T (resp. u(x) > T) and the classification of the pixel belonging to
the background (resp. the foreground). The second term (1 — 2y(z)) in (11)
is to prevent the refined contour drifting too far apart from the initial silhou-
ette. Specifically, when y(z) > 0.5 and (1 — 2y(z)) is negative, u(z) tends
to increase in order to minimize (9), which favors classifying the pixel as a
foreground pixel, vice versa.

It is important to properly set the tradeoff factor a in (11). When the
foreground and background colors are well separable, it is desired that the
first term in (11) becomes dominating; otherwise, the second term in (11)
should dominate. Thus, similar to [5], we set as to be the normalized
Kullback-Leibler (KL) distance between the local foreground and the back-
ground GMM models.

The convex active contour model Eq. (9) can be solved efficiently using
the Split Bregman method as in [18]. Once the optimization of the convex
active contour model (9) is solved, we obtain the optimal solution of u(x),
denoted by w,,(z) for image I,,,, which represents the probability of a pixel x
belonging to the foreground (0 < u,,(z) < 1). A larger value of u,,(z) means
that pixel x is more likely to belong to the foreground. wu,,(x) is then used
as a silhouette cue in (7) for the next iteration of the 3D graph-cut. Fig. 3
illustrates how the proposed constrained active contour model evolves the
initial silhouette to snap to the geometry features in this silhouette refinement
step.

5. Local Editing and Co-refinement

The purpose of this local editing and co-refinement step is to allow the
user to provide more strokes to edit the erroneous silhouette in one image,
which will then be used to automatically refine the entire sequence.

14



Calculate the color histogram of the segmented object region in each image.
Normalize the histogram by the size of the corresponding object region.

The normalized color histogram of each of the pre-segmented images is used
as the reference.

for each non-pre-segmented image I,

Calculate the correlation between the normalized histograms of I, and
each of the pre-segmented images.

Calculate the maximum correlation among the calculated correlations for
I,,,. This maximum correlation represents the similarity between the seg-
mented object region of [,,, and the true object.

end for

Images are in turn suggested for editing in ascending order of the similarity
between their segmented object regions and the true object.

Figure 4: Pseudocode for automatically selecting images for editing.

Considering that it is troublesome and time-consuming for the user to
browse through the whole image sequence to select an image for editing,
in this research we suggest an automatic method that selects the most er-
roneously segmented image for user editing. In particular, inspired by the
co-segmentation idea in [6], i.e. the same foreground object in two different
images shares similar histograms of image features, we compare the color his-
togram of the segmented foreground region in each non-pre-segmented image
I, ¢ Iy with that of the color histograms in the pre-segmented images Iy
to figure out the most erroneous segmentation.

In our implementation, we use only color histogram to identify the images
with the most erroneous segmentation result but it can easily be extended
to use other image features. Figure 4 gives the pseudocode for the algorithm
to suggest the images for editing.

Note that even for the most erroneously segmented image, the erroneous
areas are typically small. Thus, the user only needs to add strokes at the
erroneous areas and there is no need to segment the entire image again. In
particular, we use the same constrained convex active contour method to

15



(a) Input image (b) Initial seg- (d) Segmentation

mentation result result after edit-
&  extra  user ing
strokes

Figure 5: Local editing at an erroneous image

refine the user edited image here. A region R with radius r around the
newly added user strokes are defined and only the pixels within this local
region need to be relabelled, which is realized by setting all other pixels as
foreground and background seeds according to their current labels.

Figure 5 illustrates the local editing process for the segmentation result
of image 10 in the “lion” sequence. Initially, there are segmentation errors
at the leg area of the lion (see Figure 5(b)). A few user strokes are added
to those areas, where red and blue color strokes indicate foreground and
background seeds respectively. Figure 5(c) shows the extended local region
that needs to be relabelled (region R) and Figure 5(d) shows the refined
segmentation result.

After editing and refining the most erroneously segmented image, we then
perform the iterative 3D segmentation again to update the segmentation
results of other images. Now the pixels in region R of the edited image also
become hard-constraints for the 3D graph-cut. To speed up the process, only
the t-link weights of the voxels that have projected pixels lying in region R
need to be recalculated. Since only a small number of nodes are changed, the
3D graph-cut converges very fast, typically within 2 iterations. The fourth
row of Fig. 6 gives an example of the overall local editing and refinement,
where image 10 is the selected image added with a few user strokes, and
eventually not only image 10 but also images 14 and 15 are refined.

6. Experimental Results

6.1. Parameters

There are quite a few parameters in our proposed system. Most of the
parameters have been discussed previously except A\; in (1), A in (5), and s

16



Table 1: Parameters used in the system.

Parameter Value

A in (1) 0.2

Az in (9) 100

Ain (5) 2

¢ in (6) 0.85

aj in (7) 0.5

as in (11) Normalized KL distance between
local FG and BG GMMs

Dy in Section 3.3, Dy in (10) | 10% of the FG size

in (9). Parameters \; and A\, are empirically set to 0.2 and 100, respectively.
Parameter A in (5) needs to be a relatively large value to enforce the hard
constraint. Particularly, we set A = 2 to be larger than 6); times of the
maximal n-link weight as well as larger than the t-link weight defined in (6).
Note that unless specified, all the parameters are set in the same way in the
experiments. Table 1 summarizes the parameters used in our system.

6.2. Segmentation Results

We first test two real-world multi-view image sequences: the 17-view
704x528 “lion” sequence and the 14-view 704x528 “stone”sequence, whose
camera parameters are pre-computed. Fig. 6 shows the results of the “lion”
sequence, where the average proportion of the object size in the images is
38.7%.. The “lion” sequence is a very challenging one because the foreground
and background colors are very similar and the shape of the lion is very
complex. It can be seen from Fig. 6 that with only the color cue, the multi-
view object segmentation system is unable to produce an accurate object
boundary in each image (see the second row of Fig. 6). In contrary, with
both the color cue and the silhouette cue, the system can generate much more
accurate segmentation results where in general the segmentation boundaries
are smooth and snapped to the geometry features (see the third row of Fig. 6).
In addition, with a little additional user input to image 10, we are able to
generate almost perfect segmentations (see the fourth row of Fig. 6) through
the local editing and refinement, as mentioned in Section 5. Fig. 7 shows the
segmentation results of the “stone”sequence, where the average proportion
of the object size in the images is 40.8%. Similarly, the proposed system is
able to produce very accurate silhouette for each view.

17



Next, we consider segmenting relatively large-scale multi-view image se-
quences. Instead of the time-consuming process of capturing large number of
multi-view images through placing the camera at different locations, we cap-
ture a video sequence using one camera moving around the rigid object and
the video sequence is then uniformly sampled to generate a multi-view image
sequence. Despite the convenience in data acquisition, the multi-view image
sequence generated from video recording brings in more challenges. In par-
ticular, as the camera is moving during the recording, many of the images
in the sequence are blurred, which results in blurred boundaries between
foreground and background regions and also makes the automatic camera
calibration less accurate, compared to the case of static multi-view image
acquisition.

Fig. 8 shows the generated “tea pot” sequence, which consists of 56 frames
with a resolution of 640x480 and four of them are pre-segmented. On av-
erage, the object regions occupy 17.6% of the images. It can be seen that
the blurring and the shadow at the lower part of the tea pot makes it dif-
ficult to identify the object boundary even for human being (see the first
row of Fig. 8). Thus, the pre-segmented silhouettes may not be perfect and
may provide a poor hard-constraint for the multi-view segmentation. We
therefore relax the hard constraints in (5) and Section 3.4, and directly set
the likelihood L., (2, ., ©) to respectively be 1 and 0 for the foreground
and background pixels within a small band around the pre-segmented sil-
houette. Surprisingly, without strong hard constraints, the proposed multi-
view segmentation framework can still produce accurate silhouettes with-
out using any additional user input (see the second row of Fig. 8). This is
mainly because of the relatively large number of multi-view images available,
which provides stronger 3D coherence and more hints among different views.
Note that a demo video for segmenting this “tea pot” sequence is available
at “http://www.ntu.edu.sg/home/asjfcai/MultiviewCut.wmv”. Fig. 9 shows
one application of making use of the resulted silhouettes in multi-view images,
together with the bundled depth-map merging method [19], to construct a
3D model.

In addition to the above real-world multi-view sequences, our system is
also tested on three commonly used Middlebury datasets: “DinoSparseRing”,
“DinoRing” and “TempleSparseRing”. Table 2 summarizes the segmentation
performance of all the sequences, with and without the silhouette cue, in
terms of the error rate, i.e. the number of the mislabelled pixels over the
object size. In all these experiments, four images are selected from each

18



Figure 6: An illustration of the segmentation results of the “lion” image sequence. The
1st and 5th rows show some of the original images. The 2nd and 6th rows are the results
of our method with only color cue. The 3rd and 7th rows are the results of our method
with both color and silhouette cues and the 4th and 8th rows show the final results after
further local editing, where a little user input is added to image 10 (red and blue strokes
are foreground and background seeds respectively). Note that images 9 and 13 are two
pre-segmented images. 19



Figure 7: An illustration of the segmentation results of the “stone” image sequence. The
first row contains some of the original images. The 2nd, 3rd and 4th rows are respectively
the projected results with the fixed likelihood values Ly, (2 n, ©) = 1, Ly (2 n, ©) = 1.5,
(VI € Iy, VT, with ym,., = 1), and the proposed adaptive values as discussed in
Section 3.4. Note that images 1 and 5 are two pre-segmented images.

Figure 8: An illustration of the segmentation results of the “tea pot” video sequence,
which is casually captured by a hand-held camera. For the uniformly sampled 56 image
frames, images 1, 16, 31 and 46 are pre-segmented in the first step. The first row shows
some of the original images, and the second row shows the corresponding results of our
system.

20



Figure 9: The 3D model reconstructed from the silhouettes of the “tea pot” video sequence.

Table 2: Error rates of the segmentation results of different multi-view sequences.

Sequence # of Error Rate (%)
Views | with only | with color &
color cue | silhouette cues

Lion 17 5.2 3.8

Stone 14 0.58 0.6

Tea Pot 56 2.1 0.9

Dino Sparse Ring 16 1.7 0.66

Dino Ring 48 1.72 0.6

Temple Sparse Ring || 16 1.4 1.1

sequence for pre-segmentation. From Table 2, we can see that except for the
“stone” sequence, where the error rate does not change much, for all the other
sequences the error rates reduce significantly with the additional silhouette
cue. Note that the results reported in Table 2 are the results without any
local editing.

In all the experiments, the pre-segmented images in Iy are selected in
such a way that the projection angles from the object to these images are
approximately equally spaced in 3D so that most of the points on the object
surface are captured in these pre-segmented images and the initial visual hull
can achieve a good approximation for the object volume. To evaluate the
impact of the number of pre-segmented images on the final result, we repeat
the experiment on the “tea pot” sequence using different numbers of sample
frames for pre-segmentation. In particular, the number of pre-segmented
frames is increased to 6, 8 and 10, and the resulted error rates are reduced
to 0.16, 0.12 and 0.1, respectively. This suggests that the more frames we
include in the pre-segmented image set, the better the segmentation result
will be.

The proposed system is implemented in C++ and tested on a quad-

21



core Intel 3.33 GHz Xeon Processor with 16 GB RAM. To achieve a decent
running speed, we use the Open Multi-Processing (OMP) API to parallelize
several major processes. Particularly, in step 3 of the silhouette refinement,
up to 8 threads are used to process multiple images in parallel. In step 4
of the 3D graph-cut, multiple voxels in the voxel array are also processed in
parallel. The parallelized program spends about 4 minutes to segment the
“lion” sequence with the voxel array size of 150% and 1 minute to update the
entire segmentation results after the local editing with the additional user
strokes.

6.3. Limitations

In general, the proposed system can handle most of the common objects,
but it would not be able to perform well on the objects with a lot of trivial
boundaries such as trees and hair, which is due to the inherent limitation
of the adopted 2D and 3D segmentation methods. In addition, our current
system only utilizes the color cue and the silhouette cue. It is possible to
make use of other cues such as the stereo-matching cue to further improve the
segmentation performance at the cost of increasing the difficulty in trading
off among multiple cues.

7. Conclusion

In this paper, we have proposed a multi-view object segmentation system,
which is able to accurately segment a foreground object out of a set of multi-
view images with a small amount of user input and acceptable processing
speed. The system is a nice and coherent integration of several techniques
including interactive image segmentation, 3D graph-cut and the convex active
contour. The experimental results have demonstrated that the proposed
system is a practical and effective tool that can perform well for accurate
multi-view object segmentation even for very challenging real-world outdoor
multi-view image sequences.

References

[1] S. Seitz, B. Curless, J. Diebel, D. Scharstein, R. Szeliski, A compari-
son and evaluation of multi-view stereo reconstruction algorithms, in:
CVPR, 2006, pp. 519-528.

22



2]

J. Lu, V. A. Nguyen, Z. Niu, B. Singh, Z. Luo, M. N. Do, CuteChat:
a lightweight tele-immersive video chat system, in: ACM Multimedia,
2011, pp. 1309-1312.

C. Rother, V. Kolmogorov, A. Blake, “GrabCut”: Interactive fore-
ground extraction using iterated graph cuts, in: SIGGRAPH, 2004, pp.
309-314.

X. Bai, G. Sapiro, A geodesic framework for fast interactive image and
video segmentation and matting, in: ICCV, 2007, pp. 1-8.

W. Yang, J. Cai, J. Zheng, J. Luo, User-friendly interactive image seg-
mentation through unified combinatorial user inputs, IEEE Transactions
on Image Processing 19 (9) (2010) 2470-2479.

C. Rother, T. P. Minka, A. Blake, V. Kolmogorov, Cosegmentation of
image pairs by histogram matching - incorporating a global constraint
into MRF's, in: CVPR, 2006, pp. 993-1000.

L. Mukherjee, V. Singh, J. Peng, Scale invariant cosegmentation for
image groups, in: CVPR, 2011, pp. 1881-1888.

K. Chang, T. Liu, S. Lai, From co-saliency to co-segmentation: an ef-
ficient and fully unsupervised envery minimization model, in: CVPR,
2011, pp. 2129-2136.

S. Vicente, C. Rother, V. Kolmogorov, Object cosegmentation, in:
CVPR, 2011.

J. Cui, Q. Yang, F. Wen, Q. Wu, C. Zhang, L. J. V. Gool, X. Tang,
Transductive object cutout, in: CVPR, 2008.

D. Batra, A. Kowdle, D. Parikh, J. Luo, T. Chen, icoseg: Interactive
co-segmentation with intelligent scribble guidance, in: CVPR, 2010, pp.
3169-3176.

N. Campbell, G. Vogiatzis, C. Hernandez, R. Cipolla, Automatic 3D ob-
ject segmentation in multiple views using volumetric graph-cuts, Image
and Vision Computing 28 (1) (2010) 14-25.

J. Xiao, J. Wang, P. Tan, L.. Quan, Joint affinity propagation for multiple
view segmentation, in: In ICCV, 2007, p. 43.

23



[14]

[15]

[16]

[17]

[18]

[19]

N. Snavely, S. M. Seitz, R. Szeliski, Photo tourism: FExploring photo
collections in 3D, in: SIGGRAPH, 2006, pp. 835-846.

J.-S. Franco, , J. sbastien Franco, E. Boyer, Exact polyhedral visual
hulls, in: In British Machine Vision Conference, 2003, pp. 329-338.

A. Laurentini, The visual hull concept for silhouette-based image under-
standing, IEEE Trans. PAMI (1994) 150-162.

X. Bresson, S. Esedoglu, P. Vandergheynst, J. Thiran, S. Osher, Fast
global minimization of the active contour/snake model, Journal of Math-
ematical Imaging and Vision 28 (2) (2007) 151-167.

A. Nguyen, J. Cai, J. Zhang, J. Zheng, Robust interactive image segmen-
tation using convex active contours, IEEE Trans. on Image Processing
21 (8) (2012) 3734-3743.

J. Li, E. Li, Y. Chen, L. Xu, Y. Zhang, Bundled depth-map merging for
multi-view stereo, in: CVPR, 2010, pp. 2769-2776.

24



